The Effects of Hypoxia and Inflammation on Synaptic Signaling in the CNS
نویسندگان
چکیده
Normal brain function is highly dependent on oxygen and nutrient supply and when the demand for oxygen exceeds its supply, hypoxia is induced. Acute episodes of hypoxia may cause a depression in synaptic activity in many brain regions, whilst prolonged exposure to hypoxia leads to neuronal cell loss and death. Acute inadequate oxygen supply may cause anaerobic metabolism and increased respiration in an attempt to increase oxygen intake whilst chronic hypoxia may give rise to angiogenesis and erythropoiesis in order to promote oxygen delivery to peripheral tissues. The effects of hypoxia on neuronal tissue are exacerbated by the release of many inflammatory agents from glia and neuronal cells. Cytokines, such as TNF-α, and IL-1β are known to be released during the early stages of hypoxia, causing either local or systemic inflammation, which can result in cell death. Another growing body of evidence suggests that inflammation can result in neuroprotection, such as preconditioning to cerebral ischemia, causing ischemic tolerance. In the following review we discuss the effects of acute and chronic hypoxia and the release of pro-inflammatory cytokines on synaptic transmission and plasticity in the central nervous system. Specifically we discuss the effects of the pro-inflammatory agent TNF-α during a hypoxic event.
منابع مشابه
P18: Signaling Pathway in Long-Term Potentiation
Synaptic plasticity in the central nervous system (CNS) of mammals has been discussed for many years. Several forms of synaptic plasticity of mammal’s CNS have been identified, such as those that occur in long-term potentiation (LTP). Different types of LTP have been observed in distinctive areas of the CNS of mammals. The hippocampus is one of the most important areas in the CNS that pla...
متن کاملIntermittent hypoxia reduces microglia proliferation and induces DNA damage in vitro
Objective(s):Intermittent hypoxia (IH), caused by obstructive sleep apnea (OSA), could cause hippocampus or neuron damage through multiple signaling pathways, while the underlying mechanisms are still unclear. Thus, the present study aimed to explore the effect of IH on the biological functions of microglia cells. Materials and Methods:Cell proliferation of BV2 cells after exposure to IH were o...
متن کاملTargeting tumor necrosis factor-α in hypoxia and synaptic signaling
Tumor necrosis factor (TNF)-α is a proinflammatory cytokine, which is synthesised and released in the brain by astrocytes, microglia and neurons in response to numerous internal and external stimuli. It is involved in many physiological and pathophysiological processes such as gene transcription, cell proliferation, apoptosis, synaptic signalling and neuroprotection. The complex actions of TNF-...
متن کاملP162: Emerging Perspectives on Mtor-Associated Inflammation in Neurodegenerative Diseases
Inflammatory processes have been shown to be involved in development and progression of neurodegenerative diseases. Mammalian target of rapamycin (mTOR) involves in various cellular processes including autophagy, apoptosis and energy metabolism. Recently, studies have been shown an association between mTOR pathway and inflammation, supporting the role of the pathway in the pathogenesis of infla...
متن کاملP133: Targeting NF-Κb Signaling Pathway as Potential Therapeutic with Curcumin in Treatment of Multiple Sclerosis
Curcumin is active component of turmeric and isolated from the rhizome of turmeric, a phenolic natural product. One of inflammatory disease is multiple sclerosis, a multifocal chronic autoimmune inflammatory disease of the CNS, which is also known as a perivascular demyelinating disease. Studies have been shown that neuro-inflammation can have both harmful and beneficial effects on the neuronal...
متن کامل